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Long-term Concentrations of Ambient Air Pollutants and Incident Lung
Cancer in California Adults: Results from the AHSMOG Study
W. Lawrence Beeson, David E. Abbey, and Synn0ve F. Knutsen
Department of Epidemiology and Biostatistics, School of Public Health, Loma Linda University, Loma Linda, CA 92350 USA

The purpose of this study was to evaluate the relationship of long-term concentrations of ambi-
ent air pollutants and risk of incident lung cancer in nonsmoking Caifornia adults. A cohort
study of 6,338 nonsmoking, non-Hispanic, white Califorian adults, ages 27-95, was followed
from 1977 to 1992 for newly diagnosed cancers. Monthly ambient air pollution data were inter-
polated to zip code centroids according to home and work location histories, cumulated, and
then averaged over time. The increased relative risk (RR) of incident lung cancer in mdes associ-
ated with an interquartile range (IQR) increase in 100 ppb ozone (03) was 3.56 [95% confi-
dence interval (CI), 1.35-9.42]. Incident lung cancer in males was also positively asoated with
IQR increases for mean concentrations of particulate matter <10 Pm (PM1O; RR = 5.21; CI,
1.94-13.99) and SO2 (RR = 2.66; CI, 1.624.39). For females, incident lung cancer was posi-
tively associated with IQR increases for S02 (RR - 2.14; CI, 1.36-3.37) and IQR increas for
PM10 exceedace frequencies of 50 pglm3 (RR = 1.21; CI, 0.55-2.66) and 60 pgWm3 (RR m

1.25; CI, 0.57-2.71). Increased risks of incident lung cancer were associated with elevated long-
term ambient concentrations ofPM10 and SO2 in both genders and with 03 in males. The gen-
der differences for the 03 and PM10 results appeared to be piaMly due to gender differences in
expsure. Key work air pollution, lung cancer, nitrogen dioxide, ozone, particulate matter,
Seventh-day Adventists, sulfur dioxide, troposphere. Environ Health Perspect 106:813-823
(1998). [Online 10 November 1998]
hbp://epnetl.niVbs.niE.go/dgoes/ 998/106p813-823beesonlabsAraa.btmnl

Lung cancer has many etiological factors.
Among nonsmokers, lung cancer mortality
has been rising (1). The relationship between
lung cancer and tobacco, asbestos, arsenic,
radon and other radioactive materials, nickel
compounds, chromates, and several other
airborne chemicals (e.g., benzo[a]pyrene,
benzene), are fairly well established, even
though many issues are unresolved concern-
ing dose-response functions, mechanisms of
action, and environmental standards (2-6).
Although lung cancer mortality has been
studied, the relationship between chronic
levels of ambient air pollution (especially the
gaseous components) and human lung can-
cer incidence has not been adequately
described in the literature (7).

Ozone (03) in the troposphere (0-15
km), the major oxidizing component in
photochemical smog, can have various
adverse health effects (8,9). A review by
Witschi (10) stated that even though exper-
imental data show that 03 increases inci-
dence and multiplicity of lung tumors in
mice, there is not yet conclusive evidence to
link 03 exposure to lung cancer in humans.
Any such link might have serious public
health implications because the number of
people living in areas in the United States
where ambient concentrations of 03 each
year exceed the current U.S. ambient air
quality standard of 120 ppb (235 pg/m3)
was estimated by the American Lung
Association in 1991 to be 115-151 million
(11-13). Positive associations between lung

cancer mortality and ambient concentra-
tions of respirable particulates (PM10) and
SO2 as products of combustion have been
observed (14-12).

To our knowledge, the Adventist
Health Study on Smog (AHSMOG) is the
first study to evaluate a positive relationship
between long-term cumulative ambient 03
levels and newly diagnosed respiratory can-
cer in humans (18). Estimated PMIO con-
centrations were not available for the cohort
at that time. Although the ozone-incident
respiratory cancer association was elevated
[relative risk (RR) 2.25, 95% confidence
interval (CI), 0.96-5.31], this result was
based on only 17 cases and 6 years of fol-
low-up. Cancer incidence ascertainment on
this cohort has recently been extended to 15
years, resulting in a total of 36 incident
cases of lung cancer. In this study we inves-
tigated the relationship between incident
lung cancer (1977-1992) and cumulated
levels of ambient PM1O, SO2, NO2, and 03
since 1973.

Methods
Population. The AHSMOG study has been
described in detail previously (18-20). In
April 1977, 6,338 nonsmoking, non-
Hispanic, white Seventh-day Adventist
(SDA) adult residents of California were
enrolled in a prospective cohort study to
ascertain long-term chronic health effects of
ambient air pollutants. The study partici-
pants, ages 27-95 at baseline, were part of

the Adventist Health Study (AHS) (21).
Sixty-four percent of the subjects were
female. Inclusion criteria were 1) having
lived 10 years or longer within 5 miles of
their residence at time of enrollment; 2)
residing in one of the three California air
basins of San Francisco, South Coast (Los
Angeles and eastward), or San Diego; or 3)
being part of a 10% random sample ofAHS
study subjects from the rest of California
who met the other indusion criteria.

Questionnaire data. In 1976, subjects
completed the AHS mailed questionnaire,
which contained information on current
and past dietary habits, parental history of
cancer, exercise patterns, use of alcohol and
tobacco, occupation, anthropometric data,
and history of selected medical conditions
(21). All AHSMOG subjects also complet-
ed a mailed respiratory symptoms question-
naire in April 1977. This latter question-
naire contained additional questions on past
smoking history, history of exposure to
environmental tobacco smoke, occupational
history and occupational exposures, lifestyle
patterns that might effect exposure to ambi-
ent air pollutants (such as hours per week
spent outdoors by season), and residence
and work location history. These data were
updated on survivors in 1987 and 1992.
Updated residence and work location histo-
ries were obtained from surrogates of
deceased study subjects in 1987 and 1992.

Air pollution dat Estimates of monthly
ambient concentrations of 03 and other air
pollutants were formed for study participants
for the period 1966-1992 using fixed-site
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monitoring stations maintained by the
California Air Resources Board (CARB).
Other air pollutants studied in this report
indude particulate matter <10 pm in aerody-
namic diameter (PM10), SO2, and NO2.

The methods for estimating ambient
air pollutants for study participants have
been described earlier (22,23). Briefly,
monthly indices of ambient air pollutant
concentrations at monitoring stations were
interpolated to zip code centroids accord-
ing to home and work location histories,
cumulated, and then averaged over time.
Interpolations were restricted to zip code
centroids within 50 km (31.25 miles) of a
monitoring station and were not allowed to
cross barriers to air flow or any topographi-
cal obstructions in excess of 250 m above
the surrounding terrain as determined by
CARB staff (22).

Concentrations of PMIO through 1987
were estimated using site- and season-spe-
cific regressions based on total suspended
particulates (TSP) (23). Since 1987 PM1O
has been monitored throughout California.
For 03 and PMIO, exceedance frequencies
and excess concentrations above several cut-
offs were estimated in addition to mean
concentration. Exceedance frequencies were
defined as the sum of hours above a speci-
fied cutoff for gaseous pollutants or days in
excess of a cutoff for particulate pollutants.
Excess concentrations were defined as the
sum of concentrations above a cutoff. The
cutoffs used for 03 were 60, 80, 100, 120,
and 150 ppb as well as the monthly average
of the daily 8-hr average for 0900 hr to
1700 hr (used to correspond to usual hours
at work locations); separate interpolations
were used for work locations. The indices
for PM1O evaluated in this report included
mean concentration and average annual
days per year in excess of 40, 50, 60, 80 and
100 pg/m3 [PM10(100)]. For a given
threshold, exceedance frequencies and
excess concentrations are highly correlated,
so only the exceedance frequency associa-
tions are described in this report.

In the earlier years of this time period
(1966-1972), total oxidants were moni-
tored. From 1973 to 1980, 03 monitors
gradually replaced the total oxidant moni-
tors. Whenever ozone data were available,
they were used. Ozone and total oxidants
were simultaneously monitored at 5-24
stations per year throughout California
between 1974 and 1979. The correlation
of the 435 paired monthly values of hours
in excess of 100 ppb and total oxidants in
excess of the same cutoffwas 0.98 (22).

Cancer incidence ascertainment pro-
gram. We ascertained cancer incidence for
the cohort from 1 April 1977 to 1 April
1992 using a combination of two methods:

1) computer-assisted record linkage with
local and statewide cancer registries and 2)
medical records from self-reported hospi-
talizations. Both were used to ensure as
complete a coverage as possible.

We used computer-assisted record linkage
with tumor registries to ascertain any cancers
occurring in times and areas covered by them
(24). For the years 1977-1992, these included
the Los Angeles County Cancer Surveillance
Program registry and the Northern California
Cancer Center registry (Alameda, Contra
Costa, Marin, San Francisco, and San Mateo
counties). Computer-assisted record linkage
was also performed for all cohort members
still residing in California for the years
1988-1992 using the statewide California
Cancer Registry.

In addition, we ascertained hospitaliza-
tions for study subjects by annual mailed
questionnaires through 1982 and in 1987
and 1992. Phone tracing was conducted
for nonrespondents to these mailed sur-
veys. A total of 97.5% of study subjects
were successfully traced, with only 156
subjects lost to follow-up. The latter were
censored at date of last contact. Surrogates
of deceased or incapacitated study subjects
were contacted for permission to review
hospital records. Medical records were
requested for each hospitalization involving
a tumor diagnosis. These were coded by
our certified nosologist, who was blinded
to the air pollution data.

A total of 36 histologically confirmed
incident lung cancers [First International
Classification of Diseases for Oncology
(ICDO-1): 162 or Second International
Classification of Diseases for Oncology
.(ICDO-2): C34.0-C34.9] were identified
for this period.

Statistical methods. We used time-
dependent, gender-specific Cox proportion-
al hazards regression models using attained
age as the time variable (25,26) to evaluate
the association between incidence of lung
cancer and the selected air pollutants
(PM10, SO2, 03, and NO2), adjusting for
the potential confounding effects of other
covariates (27). Using attained age as the
time variable enables the effects of age to be
tightly controlled for in a nonparametric
manner, as during analysis each lung cancer
case is compared to only non-lung cancer
cases of the same attained age. The PHREG
procedure of SAS software (version 6.12;
SAS Institute, Cary, NC) was used for these
analyses (28). We conducted analyses by
gender to satisfy the proportional hazards
assumption required by the Cox propor-
tional hazards regression model.
We chose annual average number of

hours in excess of 100 ppb of03 [0 (100)] as
the primary 03 for development ofstatistical

models because this metric filtered out lower
background levels and showed the strongest
association with respiratory cancer incidence
in previous analyses (18). Air pollutants were
treated as time-dependent variables in the
Cox regression models. Each time a risk set
was created for a new lung cancer case, the
cumulated air pollutant variable for each
individual in the risk set was recomputed as
the sum of the monthly data assigned to that
individual from January 1973 through the
following months, stopping 3 years before to
the date of diagnosis of the defining case.
This cumulated value was then divided by
12 to obtain an average annual ambient
exposure for each individual. This averaging
algorithm thus allowed for a 3-year time lag
between the cumulated air pollutant and the
diagnosis of lung cancer. Pack-years of past
cigarette smoking and education were
included as covariates in all models.
Education was the best available surrogate of
socioeconomic status in this cohort (19).

Initial gender-specific Cox proportional
hazards regression models estimated RR
associated with 03 adjusting for pack-years
of past tobacco smoking and education
using attained age as the time variable. We
evaluated the large number of potential
confounders for inclusion in the final sta-
tistical model one at a time because of the
small number of incident respiratory can-
cers (20 female; 16 male) (29). The prima-
ry criterion for inclusion of potential con-
founders in the final Cox regression model
was that their inclusion changed the adjust-
ed RR estimate associated with 03(100) by
10% or more (30); none of the potential
confounders other than those included in
the initial a priori model did so. A sec-
ondary criterion was that the precision of
the model be significantly (p<O.05)
increased according to the log-likelihood
test. Only "current use of alcohol" met this
criterion and was thus included in the final
model. For comparison purposes, evalua-
tion of the association between PM1O, SO2,
and 0 and incident lung cancer used the
same final model. Analyses that combined
both genders in one model indicated a vio-
lation of the proportional hazards assump-
tion of the Cox regression. Therefore, all
final analyses are reported by gender.

Potential confounders identified from
the literature included 1) worked for 10
years or more in an environment involving
exposure to occupational air pollutants
(31,32), 2) years lived with a smoker
(33-35), 3) years worked with a smoker
(36-38), 4) whether or not a doctor had
ever diagnosed asthma (39-41), 5) parents'
history of cancer (42,43), 6) total exercise
combining work and leisure activity
(44,45), 7) body mass index (46,47), 8)
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indices of fruit and vegetable use (48), 9)
antioxidant vitamin use (49,50), 10) cur-
rent alcohol use (51), and 11) number of
homes within a quarter-mile radius of resi-
dence as a surrogate for urban/rural classifi-
cation (52-54).

To more accurately reflect individual
exposure to the selected air pollutants, we
evaluated potential interactions between
the individual pollutants (PM1O, SO2,
NO2, and 03) and outdoor summer expo-
sure variables (hours per week spent out-
doors and hours per week exercising vigor-
ously outdoors) (55) as well as all covariates
included in the final model. None of the
interaction terms significantly (p<0.05)
improved the fit of the model according to
the log-likelihood ratio test.
We checked the proportional hazards

assumption by examining log[-log(sur-
vival)] curves versus time as well as the
product term of each respective variable in
the final model with the log of the time
variable (56,54. In the final gender-specif-
ic models, all of these interaction terms
produced a p-value >0.05 based on the
Wald statistic (58-60), indicating that the
proportional hazards assumptions was not
seriously violated. This was supported fur-
ther by visual inspection.

Because education and pack-years of
past cigarette smoking were modeled as
continuous variables, the log-linear
assumption was checked by coding each of
these as a series of dummy variables and
plotting the regression coefficients for the
dummy variables and their CIs against the
midpoints of the underlying continuous
variable. Inspection of these plots indicated
that the log-linear assumption was appro-
priate because straight lines could be drawn
through the resultant regression coefficient
point estimates or their CIs.

Results
Selected characteristics of the study popula-
tion and the incident respiratory cancer
cases are given in Table 1. For females, the
cases as compared to the noncases tended
to be older, had lower educational levels,
more years of past cigarette smoking, and
increased number of years worked with a
smoker. The male cases also tended to be
older and have lower education levels than
noncases. Male cases also tended to have
worked for 10 years or more in occupations
having substantial levels of airborne conta-
minants, consumed more alcoholic bever-
ages, and exercised more.

During follow-up, 36 histologically
confirmed lung cancers were diagnosed (20
female, 16 male). The morphologies of the
incident lung cancers are given in Table 2.
Figures 1-5 show distributions of exposure

to selected indices for 03, PM1O, and annu-
al mean concentration of SO2. Subjects
with more than 20% of their monthly air
pollution data missing were exduded from
analyses. The number of subjects thus

excluded were 586 for 03 (228 males and
358 females); 521 for PMIO mean concen-
tration (198 males and 323 females); and
2,104 for SO2 mean concentration (787
males and 1,317 females). There were no

Table 1. Distributions of selected variables in the AHSMOG Study according to noncases and cases of
incident lung cancer

Variables
Age in 1977
27-59
60-69
70-79
80+

Education
<High school graduate
Some college
Body mass index (kg/m2)
13.0-22.0
22.1-24.0
24.1-26.0
26.1+

Total exercise
None/low
Moderate/high

History of cancer
No
Yes

History of asthma
No
Yes

Job air pollution
No
Yes

Current alcohol use
Never
Any
Pack-years of cigarettes
None
1-7
>7

Years lived with smoker
None
1-5
16+

Years worked with smoker
None
1-15
16+

Hours outside in summer
0-7/week
8-14/week
15+/week

Hours vigorous exercise
outside in summer
None
1-7/week
8+/week

Fruit index
<Daily
1-2 Times daily
2Twice daily

No. of homes within 0.25 mile
radius of residence
<5
5-10
>10

Females
Percent Percent
noncases cases
(n= 4,040) (n= 20)

50.1
25.8
15.5
8.6

38.6
61.4

31.9
21.9
17.3
28.9

46.9
53.1

92.7
7.3

91.8
8.2

99.1
0.9

93.0
7.0

86.9
7.3
5.8

52.2
19.6
28.2

61.8
28.3
9.9

53.5
23.7
22.8

27.5
54.5
17.9

7.2
20.8
72.0

4.1
10.4
85.5

30.0
15.0
40.0
15.0*

70.0
30.0**

26.3
36.8
21.1
15.8

35.0
65.0

85.0
15.0

90.0
10.0

100.0
0.0

94.1
5.9

65.0
5.0

30.0**

50.0
15.0
35.0

70.0
5.0

25.0*

75.0
10.0
15.0

50.0
35.0
15.0

5.9
35.3
58.8

5.0
0.0

95.0

Males
Percent Percent
noncases cases
(n= 2,262) (n= 16)

53.2
25.3
14.8
6.7

29.1
70.9

15.7
24.8
29.2
30.3

30.4
69.6

96.2
3.8

92.2
7.8

86.3
13.7

90.1
9.9

67.1
13.0
19.9

66.3
17.0
16.7

51.9
27.5
20.6

26.6
21.7
51.7

13.0
48.9
38.1

9.1
25.0
65.9

4.2
9.4

86.4

12.5
43.7
37.5
6.3**

66.7
33.3**

14.3
21.4
28.6
35.7

18.7
81.3

93.7
9.3

100.0
0.0

75.0
25.0

75.0
25.0*

62.5
6.3

31.2

56.3
31.2
12.5*

50.0
31.2
18.8

31.2
0.0

68.8

6.3
56.2
37.5

0.0
30.8
69.2

6.7
6.7

86.7
*p-Value for chi-square test comparing distributions of cases to noncases 4.05.
*p-Value for chi-square test comparing distributions of cases to noncases <0.005.
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Table 2. Incident lung cancers in AHSMOG cohort, 1977-1992

Morphology Females, past Mal
smoking sr

ICDO Description No Yes No
8000 Malignant neoplasm 1 1 0
8010 Carcinoma, NOS 6 0 2
8042 Oat cell carcinoma 0 0 0
8050 Papillary carcinoma, NOS 1 0 0
8070 Squamous cell carcinoma 1 0 2
8071 Squamous carcinoma (keratizing) 1 0 0
8140 Adenocarcinoma 2 1 5
8250 Bronchioloalveolar adenocarcinoma 1 3 1
8260 Papillary adenocarcinoma, NOS 0 1 0
8480 Mucinous adenocarcinoma 0 1 0
Totals 13 7 10
Abbreviations: ICDO, Internatonal Classification of Diseases for Oncology; NOS, not otherwise
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Figure 1. Average annual mean concentration of ozone experienced by subjectu
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8lUnmeasured low background levels.
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Figure 2. Average annual hours per year in excess of 100 ppb ozone experienced
Numbers represent the left end of interval. Mean = 333; standard deviation = 297.3;

significant differences between those who
had at least 80% good air pollution data

les, past and those excluded from analyses because
noking of incomplete air pollution data on the

variables in the final models as well as other
Yes Total potential confounders listed in Table 1.
0 2 That is, the reason for missing air pollution

1 1 data appeared to be unrelated to any of the
0 1 potential covariates investigated.
3 6 Ozone(100) was chosen as the primary air
0 1 pollutant for comparison to our prior report
0 8 (18). Ozone was strongly associated with inci-
0 1 dence oflung cancer in males, with an RR of
0 1 3.56 (CI, 1.35-9.42) for 556 hr/year above
6 36 100 ppb (the IQR) controlling for pack-years

specified. of past cigarette smoking, educational level,
and current alcohol use (Table 3). However,
the 03 effect did not appear to be as stable or
strong as the PMIO and SO2 effects (see
Multipollutant Analyses below). The other
metrics of 03 and 10I also showed elevated
risks corresponding to increments of one IQR
for incident lung cancer. Mean concentrations
of PM10 (RR = 5.21; CI, 1.94-13.99) and
S02 (RR = 2.66; CI, 1.62-4.39) also showed
significant increased risk of incident lung can-
cer in males (Table 4). For males, all
exceedance frequencies of PM1IO were signifi-
cantly elevated, and regression coefficients
increased with higher cutoffs (see Table 4).
For females, although all of the RRs for aver-
age annual mean concentration and the
exceedance frequencies for PM10 were above
1.0, the CIs all included the null value. The

35 37 40 42

largest PMIO associations with incident lung
35 37 40 42 cancer in females were RR = 1.21 (CI,

0.55-2.66) for 50 p/m3 and RR = 1.25 (CI,
0.57-2.71) for 60 pg/im3 (data not shown).

s, 1973-1992. Numbers But for both genders, the regression coeffi-
cients generally increased for both 03 and
PMIO as the exceedance frequency threshold
increased. Females also showed an increased
risk of incident lung cancer for one IQR
increase in mean concentration of S02 (RR =
2.14, CI, 1.36-3.37). There was a small eleva-
tion in lung cancer risk for one IQR increase
in mean concentration of NO2 in both gen-
ders, but the CIs inluded the null value.

Males who used alcohol in 1977 were at
increased risk of lung cancer independent of
past smoking. This was demonstrated when
analyses were restricted to never smokers: the
association seen for alcohol remained elevated
(RR = 5.29; CI, 1.04-27.02). For females,
neither 03 nor mean concentration PMIO was
associated with incidence oflung cancer; how-
ever, pack-years of past smoking was associat-
ed with incidence of lung cancer (Table 5)
with an RR of 1.62 (CI, 1.27-2.07) for each

8 510 10 pack-years of past smoking. Among sub-
jects who were past smokers, 78.1% of males
and 73.4% of females had stopped smoking

by subjects, 1973-1992. more than 10 years before enrollment in
n = 5,893. 1977.
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A higher proportion of males than
females reported working in occupations
involving airborne contaminants (see Table
1). These occupations have been previously
reported and described (19,61). When we
excluded those who had worked in these
occupations, the RR of lung cancer in
males associated with the IQR of 03(100)
increased to 4.73 (CI, 1.49-15.03).

Relative risks for 03 from the Cox multi-
variate modeling approach were compared to
gender-specific adjusted (age, pack-years, edu-
cation, and alcohol) Mantel-Haenszel (MH)
analyses modified for person years (62) and
found to be similar. These analyses categorized
continuous variables, and any assumptions of
linear or additive effects were avoided.
However, there is some loss of statistical
power resulting from this categorization. The
MH-adjusted RRs associated with 03(100)
(>700 hr/year compared to <90 hr/year) for
males and females were 3.56 (CI, 1.08-11.62)
and 1.09 (CI, 0.26-4.56), respectively.

Time on study as time variable. Because
other investigators have used "time on study"
as the time variable in Cox proportional haz-
ards modeling, we reran the final gender-spe-
cific models for 03, replacing attained age as
the time variable with time on study in
months. Age at baseline was then added to
each model as a covariate. This approach
resulted in a similar RR for an IQR increase of
03(100) (males: RR = 3.15; CI, 1.19-8.29
and females: RR = 0.91; CI, 0.39-2.11).

Never smokers. The relationship between
03(100) and lung cancer was reevaluated in
never smokers. The RR in males increased
slightly (RR = 4.48; CI, 1.25-16.04), with
females again showing no relationship. When
analyses were restricted to male past smokers
(i.e., exduding never smokers), the results were
reduced (RR = 2.15; CI, 0.42-10.89). For
PM10(100), restriction to never smokers result-
ed in no major change in RR for incident lung
cancer in males (RR = 2.90, CI, 1.49-5.62),
compared to an RR of2.95 for all males.

Multipollutant analyses. Because different
components of air pollution frequently occur
together and are highly correlated (Table 6),
the association observed with 03(100) in males
could be due instead to other air pollution
components (63). To evaluate this, multipollu-
tant analyses were conducted where all pairwise
comparisons of 03(100) and mean concentra-
tions of PMIO, SO2, and NO2 were induded in
the time-dependent Cox regression models.
Pairwise comparisons were made on that por-
tion of the cohort having 80% nonmissing data
for both pollutants (see Table 5). Because
PM was more highly correlated with 03 than
with other air pollutants, an additional metric
of PM1O [days/year in excess of 100 pg/m3;
PM10(100)] was also evaluated. Two questions
were addressed in the pairwise comparisons of

24
to

30

a.

08 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

PM10 (ig/M3)
Figure 3. Average annual mean concentration of PM10 experienced by subjects, 1973-1992. Numbers
represent the left end of interval. Mean = 51; standard deviation = 16.52; n = 5,893.
aUnmeasured low background levels.

14 Mb`

12

10

4

0
0 17 33 50 67 83 100 117 133 150 167

Days/year in excess of 100 jg/rn3 PM1,

Figure 4. Average annual days per year in excess of 100 pg/rn3 of PM1 experienced by subjects,
1973-1992. Numbers represent the left end of interval. Mean = 31.2; standard deviation = 32.48; n = 5,962.
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Figure 5. Average annual mean concentration of SO2 experienced by subjects, 1973-1992. Numbers
represent the left end of interval. Mean = 5.7; standard deviation = 2.9; n = 4,355.
alUnmeasured low background levels.
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Table 3. Estimated relatve risks of lung cancer incidence, 1977-1992, associated with selected increments
of average annual hours of ambient ozone in excess of 100 ppb and other covariates in Cox proportional haz-
ards model8 (males only, n = 2,278; cases = 16)

Regression Relative Cl for
Variable coefficient (,B) SE (3) lncrementb riskc relative risk

Ozone (hr in excess of 100 ppb)d 0.002284 0.0008932 556 hr/year 3.56 1.35-9.42
Pack-years of past smoking 0.015168 0.01080 10 pack-years 1.16 0.94-1.44
Education -0.135385 0.08836 4 years 0.58 0.29-1.16
Current alcohol 1.462174 0.61806 1 = yes, 0 = no 4.32 1.29-14.49
Abbreviations: Cl, 95% confidence interval; SE, standard error.
TCox PH regression time variable = attained age controlling for age at entrance.
bincrement for computations of relative risk. For ozone, the increment was derived from the interquartile range (25-75% of population
exposed).
cRelative risk of increase in exposure of one increment, holding other variables in model constant.
dAverage annual hours in excess of 100 ppb, 1973 to 3 years before risk set (i.e., 3-year lag).

Table 4. Relative risks of incident lung cancer associated with interquartile ranges of selected air pollu-
tants8 (males only, n = 2,278; cases = 16)

Regression Increment Relative Cl for
Variable coefficient (fl SE (J} (interquartile range)b risk relative risk
Ozone, hr in excess ofc
60 ppb 0.000814 0.0005267 935 hr/year 2.14 0.82-5.62
80 ppb 0.001433 0.0006755 756 hr/year 2.96 1.09-8.04
100 ppb 0.002284 0.0008932 556 hr/year 3.56 1.35-9.42
120 ppb 0.003604 0.00123 367 hr/year 3.75 1.55-9.09
150 ppb 0.006945 0.00196 185 hr/year 3.61 1.78-7.35

Ozone, 8-hr average 0.287000 0.19009 2.12 ppb 2.23 0.79-6.34
Ozone, mean concentration 0.041896 0.035336 8 hr 1.65 0.72-3.80
PM10, hr in excess ofd
40 pg/m3 0.010824 0.004524 139 days/year 4.50 1.31-15.44
50 pg/m3 0.010752 0.004008 149 days/year 4.96 1.54-16.00
60 pg/m3 0.011760 0.0039672 132 days/year 4.72 1.69-13.18
80 pg/m3 0.015792 0.0045576 78 days/year 3.43 1.71-6.88
100 pg/m3 0.025176 0.0064728 43 days/year 2.95 1.71-5.09

PM10, mean concentration 0.068759 0.02101 24 pgiM3 5.21 1.94-13.99
S02, mean concentration 0.264594 0.06892 3.7 ppb 2.66 1.62-4.39
NO2, mean concentration 0.188802 0.19887 1.98 ppb 1.45 0.67-3.14

Abbreviations: Cl, 95% confidence interval; SE, standard error.
'All models above based on time-dependent Cox proportional hazards regression with attained age as the time variable and controlling for
pack-years of cigarette smoking, years of education, and current use of alcohol at baseline. Because of missing data from monitoring sta-
tions, the n varies for each air pollutant (03; n = 2,050; PM1o, n = 2,080; SO2; n = 1,491; NO2; n = 1,971).
bincrement based on interquartile range (75-25%) of population exposed.
cAverage annual hours in excess of listed ppb, 1973, 3 years before risk set (i.e., 3-year lag).
dAverage annual hours in excess of 100 pg/M3, 1973, 3 years before risk set (i.e., 3-year lag).

Table 5. Estimated relative risks of lung cancer incidence, 1977-1992, associated with selected incre-
ments of average annual hours of ambient ozone in excess of 100 ppb and other covariates in Cox propor-
tional hazards model8 (females only, n = 4,060; cases = 20)

Regression Relative Cl for
Variable coefficient (J3 SE (D) Incrementb riskc relative risk
Ozone (hr in excess of 100 ppb)d -0.000114 0.000766 556 hr/year 0.94 0.41-2.16
Pack-years of past smoking 0.048467 0.01240 10 pack-years 1.62 1.27-2.07
Education -0.086790 0.08565 4 years 0.71 0.36-1.38
Current alcohol 0.246970 1.04240 1 = yes,0 = no 1.28 0.17-9.88
Abbreviations: Cl, 95% confidence interval; SE, standard error.
TCox PH regression time variable = attained age controlling for age at entrance.
bincrement for computations of relative risk; for ozone, the increment was derived from the interquartile range (25-75% of population
exposed).
cRelative risk of increase in exposure of one increment, holding other variables in model constant
dAverage annual hours in excess of 100 ppb, 1973to 3 years before risk set (i.e., 3-year lag)

selected air pollutants: 1) Was the single pollu-
tant regression coefficient reduced when anoth-
er pollutant was added to the model? 2) Which
pollutant had the highest Wald statistic in the
single pollutant models? The Wald statistic can
be taken as a scale-free measure of the strength
ofassociation with lung cancer (64).

For males the regression coefficients were
not reduced for PM1O or SO2 when other
pollutants (i.e., 03 or NO2) were added one
at a time to the single-pollutant models. This
was not true for other pollutants. When
PM10 and SO2 were in the same model, both
coefficients remained strongly positive and

signfficant, indicating that they may have an
independent association with lung cancer.
PM10(100) had the highest Wald statistic,
indicating the strongest association with lung
cancer. For females only the regression coeffi-
cient for SO2 was not reduced when other
pollutants were added one at a time to the
single pollutant models. SO2 had the highest
Wald statistic, indicating the strongest associ-
ation with lung cancer.

Discussion
Population Density

Our study design essentially controls for pop-
ulation density because more than 90% of
subjects were selected from urban areas. The
baseline questionnaire data did ascertain pop-
ulation density according to a three-category
measure (see last entry in Table 1). When the
final model was rerun restricted to subjects
who reported living in high-density residence
areas, the relative risk of 03(100) increased to
10.18 (CI, 2.44-42.45) for males and
remained nonsignificant for females. When
this restriction was applied to PM10(100) and
mean concentration ofSO2 for males, the RRs
increased to 4.52 (CI, 2.31-8.84) and 3.22
(CI, 1.87-5.54), respectively. A similar restric-
tion for females living in high-density areas
resulted in only a moderate increased risk of
lung cancer associated with PM10(100) (RR =
1.13; CI, 0.64-2.02) and with mean concen-
tration of SO2 (RR = 2.11; CI, 1.32-3.38).
This is consistent with the hypothesis that
products of combustion (PM10 and SO2) are
associated with lung cancer incidence.

Gender Differences
The association between 03 and lung cancer
was only observed in males, whereas PM1O
and SO2 were associated with lung cancer
for both genders. This gender difference
may be due to the males spending much
more time outdoors than females. This was
especially true for the summer when 03 lev-
els are higher (18.9 hr/week versus 10.3
hr/week respectively, p<0.0001). They also
reported more vigorous exercise outdoors in
the summer compared to females (10.0
hr/week versus 5.1 hr/week, p<0.0001).
Ozone deteriorates more rapidly in the
indoor environment than PMIO or S02.

Another partial explanation could be
gender differences in endogenous estrogen
levels (65). Because estrogen is a potent
antioxidant of lipids (66), it may help reduce
possible oxidative damage caused by the
action of 03 on membrane lipids lining the
respiratory tract. Sack et al. (62) observed
that the administration ofphysiological levels
of 17,-estradiol to postmenopausal women
significantly inhibited the oxidation of low
density lipoproteins (LDL). In our study
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only one of the female lung cancers occurred
among women identified as premenopausal
at baseline. Among postmenopausal women,
the effect of 03(100) on lung cancer tended
to be stronger among those who had never
taken estrogen compared to those who had
ever used these hormones. However, these
differences were not statistically significant.

The gender differences we have observed
for ozone-lung cancer associations are simi-
lar to the gender differences observed for
adult-onset asthma in this study. Greer et al.
(61) found that elevated long-term ambient
concentrations of 03 were strongly associat-
ed with adult-onset asthma in men (RR =
3.12) but not in women (RR = 0.94).

Dietary Antioxidants
Vitamin C is the major antioxidant present
on the airway surface of the lung, where it
could be important in protecting against
exogenous oxidants such as ambient 03
(68). Many ecologic, case-control, and
cohort studies, and a few clinical trials have
shown some benefit of antioxidant supple-
ments on risk of epithelial cancers (69).

Fraser et al. (70Q observed a reduced risk
of lung cancer in the main AHS cohort for
subjects who consumed fruit at least two times
per day (RR = 0.26; CI, 0.10-0.70) compared
to subjects who consumed fruit less than three
times a week. A protective effect of fruit con-
sumption on lung cancer was not observed in
this AHSMOG cohort. This discrepancy in
findings may be due to a larger range of fruit
intakes in Fraser's report. When we reanalyzed
the AHS lung cancer data using similar exclu-
sions as in the AHSMOG study, the protec-
tive effect of fruit consumption was weakened
(RR = 0.68; CI, 0.32-1.47). The excluded
subjects tended to have lower fruit consump-
tion, and it was the lowest category of fruit
consumption (e.g., low antioxidant vitamins)
that showed increased risk to lung cancer.

We created a crude antioxidant vita-
min supplement index (vitamins A, C, and
E) based on the food frequency question-
naire administered in 1976. High use of
these vitamin supplements was defined as
>1,000 mg/week of vitamin C or at least
daily use of any dose of vitamin A or at
least 200 lU/week of vitamin E. Low use
was defined as none of the antioxidant vit-
amins in the high category. No protective
effect was observed in males or females.

Animal Studies
Most of the reports relating 03 and lung/res-
piratory cancer have been done in carefully
controlled animal studies (71). Borek et al.
(72,73) found that treatment of hamster
embryo and mouse cells with 5,000 ppb of
03 for 5 min resulted in cell transformation
and concluded that 03 is a cocarcinogen.

Table 6. Pearson correlation coefficients (and sample size) for selected ambient pollutants, average
annual values for years 1973-1992, AHSMOG studya

Ozone PM10 SO NO
2 2

Mean Mean mean mean
Hr/year concentration concentration Days/year concentration concentration

Air pollutant >100 ppb (ppb) (pg/mi3) >100 pg/M3 (ppb) (ppb)
Ozone, hr/year 1.0 0.776 0.832 0.834 0.133 0.408
>100 ppb (5,893) (5,807) (5,807) (4,3491 (5,643)
Ozone, mean concentration - 1.0 0.768 0.626 0.095 0.360
(ppb) (5,807) (5,807) (4,349) (5,643)
PM10, mean concentration - - 1.0 0.849 0.319 0.567
(pg/m3) (5,962) (4,347) (5,638)
PM10, days/year - - - 1.0 -0.050 0.146
>100 pg/m3 (4,347) (5,638)
SO2, mean concentration - - - - 1.0 0.791
(ppb) (4,351)

aSubjects whose accumulated data for specified ambient pollutant exceeded 20% missing data for the time period 1973-1992 (or date of cen-
soring} were excluded.

Even at near-ambient concentrations
(100-500 ppb), 03 induces morphologic
changes in all parts of the respiratory tract in
animals and is potentially tumorigenic (74).
Other studies on mice have reported K-ras
mutations in lung neoplasms in mice
exposed to 03, indicating mutations in
ozone-induced bronchioloalveolar adenomas
and carcinomas (75). The cytotoxicity of
natural killer cells in mice can be damaged
by exposure to 03 for 1 day (76). Hassett et
al. (77) concluded that 03 exposure at rela-
tively high ambient concentrations (310 and
500 ppb) caused an increase in lung tumors
in mice. However, there is some evidence
that under certain circumstances, 03 can also
inhibit tumor formation (78,79).

Li and Richters (80) investigated sub-
populations of thymocytes and spleen T
lymphocytes in mice, and their findings
suggested that short-term 03 inhalation can
affect the T-cell immune system adversely,
particularly the CD4+ cells. T-cell-depen-
dent immune responses form an important
component of the lung defense to respirato-
ry infections and possibly also to neoplasms
(81,82). Rajini et al. (83) have postulated
that long-term exposure to 03 (at least in
hamsters) with its accompanying hyperpla-
sia of respiratory tract epithelium might
enhance tumor development.

Epidemiologic Studies on
Respiratory Cancer and Ambient
Air Pollution
A recent review paper by Cohen and Pope (84)
indicated that the problems plaguing previous
research (e.g., errors in the measurement of air
pollution exposure and in the measurement of
other risk factors including cigarette smoking)
have limited the ability to quantify the magni-
tude of the excess lung cancer mortality risks
associated with air pollution and that further
research was needed. A recent EPA Air Quality
Criteria for Ozone document concluded that

the genotoxicity and carcinogenicity of 03
(especially in humans) is inconclusive (85). A
summarization of the literature by the EPA
regarding the human health effects associated
with acid aerosol exposures concluded that
chronic acid aerosol exposures may promote
lung cancer at high concentrations, possibly by
chronic irritation of the lining of the respiratory
tract or by decreasing the clearance rates in the
lungs (86). The data referenced in this report
also suggest that ambient particulate exposure
may be associated with increased morbidity and
mortality at PM concentrations below those
previously thought to affect human health (86).

Lippmann (87-89) published a series of
review articles regarding the health effects of
tropospheric 03 on animals and humans.
He concluded that humans who are active
outdoors during the warmer months may
have greater effective 03 exposures than test
animals. Several population-based studies of
lung function indicate that there may be an
accelerated aging of the lung associated with
living in communities with persistently ele-
vated ambient 03 (90-94).

A limited number of studies on human
populations have evaluated lung cancer and
ambient particulate concentrations. In a
case-control study of air pollution, mea-
sured as total suspended particulates, and
incident lung cancer, Vena (95) compared
417 male lung cancer cases with 752 con-
trols. The author found that there was
increased lung cancer risk from smoking
and occupational exposure if there was also
long-term exposure to particulate pollu-
tion. The effect of 03 was not evaluated.

Our results of an association between
long-term ambient concentration of PMIO
and incidence of lung cancer are consistent
with those reported by others (14,16). Similar
findings from an analysis of 552,138 men and
women drawn from the American Cancer
Society (ACS) Cancer Prevention Study II
showed that particulate air pollution, which

Environmental Health Perspectives * Volume 106, Number 12, December 1998 819



Articles * Beeson et al.

the authors concluded was particularly from
combustion sources, was associated with lung
cancer mortality (14). The authors conduded
that lung cancer mortality seemed to be more
strongly associated with sulfate partides than
the more general index of fine particulates and
that sulfate partides make up the largest frac-
tion of fine partides by mass. Associations per-
taining to 03 have.not been reported from
these studies. The Six Cities Study lacked suf-
ficiently contrasting levels of03(1).

Possible Biologic Mechanisms
Ozone-has been shown to be reactive to bio-
molecules, particularly those with carbon-car-
bon double bonds such as found in the mem-
brane lipids (96,94. The toxic effects of 03
have been attributed to its ability to cause oxi-
dation or peroxidation of biomolecules direct-
ly or via free-radical reactions (3,98). In aque-
ous solutions, such as is found in the epithelial
lining of the respiratory tract, 03 decomposes
to give hydrogen peroxide, superoxide, and
hydroxy radicals, which can take part in sec-
ondary reactions (99). Free radicals produced
within the body have been linked to the
pathogenesis of cancer (100,101). Cellular
DNA can also be damaged by 03 (102) by
compromising macrophage functions impor-
tant in tumor surveillance. Ozone could
potentially alter host susceptibility to lung
cancer (103). Numerous investigators have
provided functional and anatomical evidence
to support the hypothesis that exposure to
ambient 03, respirable particulates (PM10),
and SO2 can have profound effects on sys-
temic immunity (104-106). Koren et al.
(107) have shown alterations in markers asso-
ciated with pulmonary inflammation in
humans exposed to ambient levels of 03.

Products of combustion of fossil fuels
such as PM1o and SO2 may also damage the
respiratory epithelium. Respirable particles
(PM10) may contain benzo[a]pyrene and
other chemicals of carcinogenic potential
(105). Sulfur dioxide is a known respiratory
irritant (5), which may act as a promotor or
cocarcinogen. Potential mechanisms for
lung cancer promotion could indude slow-
ing of mucociiary clearance, impairment of
alveolar macrophage function, and other
specific or nonspecific effects on the
immune response such as increased epithe-
lial permeability, which would facilitate
absorption of carcinogenic components of
particulate matter. Particulate matter may
also transport reactive oxygen species or
increase their formation (86).

Alcohol
The observation that alcohol consumption,
at least in males, is a significant risk factor
for lung cancer is consistent with other
studies-those that did not control for

smoking at the individual level (108,109)
and those that did (110,111).

Alcohol may act as a promoter of lung
cancer through a variety of mechanisms. From
animal research, major changes in the lipid
surfactant in the lung (112) and levels of
inducible enzymes capable of activating pro-
carcinogens and mutagens (113) have been
demonstrated as consequences of alcohol con-
sumption. Ziegler (114) has identified several
other mechanisms for the alcohol-associated
carcinogenesis: 1) alcohol may facilitate the
transport of carcinogens (e.g., airborne partic-
ulates or tobacco-associated) across the mucos-
al lining; 2) alcohol may damage the liver's
ability to detoxify certain carcinogens; 3) alco-
hol consumption may affect nutritional status
by reducing intake and/or absorption of essen-
tial nutrients; and 4) in conjunction with liver
disease and nutrient deficiencies, alcohol may
suppress the immune response. It is also possi-
ble that in our cohort, alcohol use is serving as
a marker for increased exposure to tobacco
smoke.

Limitations of Study
Possible underreporting of alcohol and
tobacco use. Shapiro et al. (115) have shown
that underascertainment of confounders,
even when nondifferential, can result in a
spurious association between disease inci-
dence and a risk factor. Smoking tends to
be underreported in cohort studies
(116,117). Because tobacco smoking and
alcohol use are discouraged by the SDA
Church, it is possible that the use of these
substances has been underestimated in our
study. However, it is unlikely that RRs as
high as 3.56 for 03(100) and 5.21 for mean
concentration of PM1O would be due to
unmeasured confounders (118) not already
addressed in this report. All individuals (43
females, 49 males) reporting current smok-
ing in 1977 were excluded from the study.
We have estimated that if current smoking,
past smoking, and current alcohol use each
were underreported by 50% and this under-
reporting was not differential with respect
to 03 concentrations, the observed RR of
3.56 in males would be even higher.
However, if the underreporting only
occurred in the high 03 quartile, the true
RR would be reduced to 2.0.

Outdoor ambient concentrations.
Ozone estimates are of outdoor ambient
concentrations and may not reflect true
individual exposure. Ozone is highly reac-
tive and adsorbs rapidly onto indoor sur-
faces, resulting in a short indoor half-life
(119). As a consequence, indoor/outdoor
ratios of 03 have been reported from 0.10
to 0.80 (120). We have rerun our final
models using adjusted outdoor ambient
mean concentrations obtained by applying

an indoor/outdoor adjustment factor to
mean concentration of 03 according to
time spent indoors as reported by season for
each study participant in 1977. An indoor
adjustment factor of 0.5 for 03 was used as
described by Winer et al. (121). Results
consistent with those reported for unadjust-
ed mean concentration were obtained.
Ambient 03 is highly correlated with prod-
ucts of fossil fuel combustion (PM1O and
SO2), and associations seen for 03 may be
partly due to uncontrolled confounding by
the presence of these other air pollutants.

Interpolationsfirom fixed site monitors.
Estimates of ambient air pollution concen-
trations are based on interpolations from
fixed-site monitoring stations. The preci-
sion of these interpolations was assessed by
comparing values interpolated from sur-
rounding stations to those monitored at a
station. The correlation coefficient for 2-
year average annual cumulative exceedance
of 03 >100 ppb interpolated versus actual-
ly measured at monitoring stations was r =
0.85 (22). Quality grades were assigned to
all interpolations used in our study (22).
When the RR of lung cancer as associated
with 03(100) was reevaluated in only the
1,751 males for whom 80% of months
were "A" or "B" quality data (within 20
miles of a monitoring station), it was found
to be 3.05 (CI, 1.14-8.17). There were 13
incident lung cancer cases in these males.

When analyses for mean concentration of
PM1O were restricted to individuals having
80% A/B quality months, the observed risk of
lung cancer in males was 2.91 (CI, 1.06-7.97).
Similar restrictions for females yielded a risk
estimate of 1.53 (CI, 0.57-4.11). The
increased risk of lung cancer associated with
mean concentration of SO2 remained elevated
when analyses were restricted to individuals
with 80% A/B quality data. The RR for males
was 2.18 (CI, 0.92-5.20), and it was 2.52 (CI,
1.19-5.33) for females.

Indirect estimates ofPM1O before 1987.
PM1O has been monitored on a statewide
basis in California only since 1987. In this
study, estimated ambient levels of PMIO
could potentially be inaccurate because
indirect estimates using site- and seasonal-
specific regression prediction equations
based on TSP were used before 1987.
Abbey et al. (23), however, have shown
that using these indirect estimates only
marginally impacts the precision of long-
term cumulative averages of PM10.

Multipollutant analyses. Air pollutants
induded in the multipollutant analyses were
limited to PM1O, SO2, 03, and NO2. SO2
levels are relatively low in most of California
compared to other areas in eastern United
States and Europe, yet were found to
increase lung cancer risk in both genders.
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Suspended sulfates (SO4) were not evaluated
because these data were only measured since
1977, thus not allowing sufficient latency
time for cancer to develop. Also for NO2,
indoor sources must be carefully considered
(more so than for other ambient air pollu-
tants) because indoor sources contribute a
substantial amount of the total personal
exposure to NO2 (122). Data to control for
indoor sources were not collected until 1987
and thus were only available on 62% of the
study population who survived until then
(123). However, it is possible that other pol-
lutants (e.g., polycyclic aromatic hydrocar-
bons) not yet widely monitored could be
responsible for the increased risk oflung can-
cer. Differences in measurement error
among the other air pollutants may account
for differences in strengths of association
seen for different air pollutants (118,124).

Summary
In this report we observed significant positive
associations between lung cancer incidence
and the number of days per year that res-
pirable particulates (PM1O) exceeded several
thresholds for males. Lung cancer incidence in
males was associated with PMIO exceedance
frequencies of 40, 50, 60, 80, and 100 pg/m3
with the regression estimates increasing as the
cutoff increased. For females, the RRs of lung
cancer incidence were all above 1.0 for each of
the PM10 thresholds investigated. However,
all of the corresponding CIs induded the null
value. Both genders also showed increased risk
of incident lung cancer for one interquartile
increase in mean concentration ofSO2. Males,
but not females, showed moderate associations
for 03 and incident lung cancer risk. These
associations were significant for hours per year
exceedance frequencies of 03 thresholds as
low as 80 ppb. Our findings suggest that the
current EPA standard of 120 ppb for 03 may
not adequately protect the large portion of the
U.S. male population who live or work in
communities where the current standard for
03 is frequently exceeded. Excess lung cancer
risk was also observed at levels below the
National Ambient Air Quality Standard of 50
pg/m3 (annual arithmetic mean) for PM O1
The association between combustion-related
sources of air pollution and incident lung can-
cer was consistent across genders. More
research with a larger number of incident cases
of lung cancer is needed to better understand
the observed gender difference in regard to 03
exposure as well as to better separate the inde-
pendent effects of 03, airborne particulate
matter, SO2, and NO2.
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